
Fusion of irreducible modules in 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2010 J. Phys. A: Math. Theor. 43 045210

(http://iopscience.iop.org/1751-8121/43/4/045210)

Download details:

IP Address: 171.66.16.157

The article was downloaded on 03/06/2010 at 08:51

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/43/4
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 045210 (27pp) doi:10.1088/1751-8113/43/4/045210

Fusion of irreducible modules in WLM(p, p′)

Jørgen Rasmussen

Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010,
Australia

E-mail: j.rasmussen@ms.unimelb.edu.au

Received 17 July 2009, in final form 20 November 2009
Published 8 January 2010
Online at stacks.iop.org/JPhysA/43/045210

Abstract
Based on symmetry principles, we derive a fusion algebra generated from
repeated fusions of the irreducible modules appearing in the W-extended
logarithmic minimal model WLM(p, p′). In addition to the irreducible
modules themselves, closure of the commutative and associative fusion algebra
requires the participation of a variety of reducible yet indecomposable modules.
We conjecture that this fusion algebra is the same as the one obtained
by application of the Nahm–Gaberdiel–Kausch algorithm and find that it
reproduces the known such results for WLM(1, p′) and WLM(2, 3). For
p > 1, this fusion algebra does not contain a unit. Requiring that the
spectrum of modules is invariant under a natural notion of conjugation, however,
introduces additional (p − 1)(p′ − 1) reducible yet indecomposable rank-1
modules, among which the identity is found, still yielding a well-defined fusion
algebra. In this greater fusion algebra, the aforementioned symmetries are
generated by fusions with the three irreducible modules of conformal weights
�kp−1,1, k = 1, 2, 3. We also identify polynomial fusion rings associated with
our fusion algebras.

PACS number: 11.25.Hf

1. Introduction

We consider the infinite series of Yang–Baxter integrable logarithmic minimal models
LM(p, p′) [1, 2] viewed in the W-extended picture [3–6] where they are denoted by
WLM(p, p′). The extension is believed to be with respect to the W = Wp,p′ symmetry
algebra of [7], and we are considering the models in their continuum scaling limits. An object
of great interest is the fusion algebra, here denoted by Irr[WLM(p, p′)], generated from
repeated fusions of the 2pp′ + 1

2 (p − 1)(p′ − 1) irreducible modules in WLM(p, p′). For
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p > 1, we do not have boundary conditions associated with all of these modules and are
therefore incapable of determining the complete set of fusion rules within our lattice approach
based on Cardy’s picture [8, 9]. On the other hand, this fusion algebra is believed to be
obtainable using the Nahm–Gaberdiel–Kausch algorithm [10, 11]. The application of this
algorithm is very tedious, however, even for p = 1 and in the case WLM(2, 3), so the goal
here is to access the fusion rules by other means.

First, we construct a fusion algebra whose spectrum of modules contains all the irreducible
modules in addition to 8pp′ − 6p − 6p′ + 4 reducible yet indecomposable modules of which
2(p−1)(p′ −1) are of rank 1, 4pp′ −2p−2p′ are of rank 2 and 2(p−1)(p′ −1) are of rank 3.
This fusion algebra is obtained from the fundamental fusion algebra Fund[WLM(p, p′)],
defined in [6], as the minimal extension thereof which is invariant under a particular triplet of
symmetries. Here, we say that a fusion algebra A with fusion multiplication ⊗ is invariant
under O, or simply O-symmetric, if

O[R] ⊗ R′ = R ⊗ O[R′] = O[R ⊗ R′], ∀ R,R′ ∈ J , (1.1)

where O is a map from and to the spectrum or set J of modules underlying the fusion
algebra. The spectrum of this extension of Fund[WLM(p, p′)] is also invariant under
a natural notion of conjugation. The extended fusion algebra itself is therefore denoted
by Conj[WLM(p, p′)]. We prove that the three symmetries of Conj[WLM(p, p′)] are
generated by fusion with the three irreducible modules of conformal weights �kp−1,1 =
�1,kp′−1, k = 1, 2, 3, where �ρ,σ is given by the usual Kac formula. For critical percolation
in the W-extended picture WLM(2, 3), these conformal weights are �1,1 = 0, �3,1 = 2
and �5,1 = 7.

As a subalgebra of Conj[WLM(p, p′)], we identify the algebra generated by repeated
fusions of the irreducible modules. We conjecture that this fusion algebra is indeed
Irr[WLM(p, p′)] and note that it is obtained from Conj[WLM(p, p′)] by omitting
(p − 1)(p′ − 1) of the reducible yet indecomposable rank-1 modules. That our proposal
for WLM(1, p′) yields the known results [3, 12, 13] is ensured by construction, while we
have verified that it also reproduces the very recent results for WLM(2, 3) [14].

For p > 1, the fusion algebra Irr[WLM(p, p′)] does not have a unit nor is its spectrum
invariant under conjugation. The minimal extension, whose spectrum is conjugation invariant,
is the fusion algebra Conj[WLM(p, p′)], and this algebra does contain an identity. In this
setting, conjugation invariance of the spectrum thus implies the existence of an identity. The
paper [14] on WLM(2, 3) is actually focussed on such a conjugation-invariant spectrum, and
we have verified that Conj[WLM(2, 3)] indeed corresponds to their results.

We also identify a polynomial fusion ring isomorphic to Conj[WLM(p, p′)]. For
p = 1, where Conj[WLM(1, p′)] = Fund[WLM(1, p′)], this was already done in [6]
and involved a quotient polynomial ring with two generators. For p > 1, on the other hand,
we find that the sought-after quotient polynomial ring has five generators corresponding to the
two fundamental representations of Fund[WLM(p, p′)] and the three symmetry-generating
irreducible modules W(�kp−1,1), k = 1, 2, 3. The fusion algebra Irr[WLM(p, p′)] is
isomorphic to a subring thereof.

Many subalgebras and quotients can be identified in the various fusion algebras discussed
here. In [15], a general framework is outlined within which it makes sense to discuss rings
of equivalence classes of fusion-algebra generators. Grothendieck-like rings, as the one
generated by the 2pp′ generators K±

r,s in [7], arise as particularly interesting cases obtained
by elevating character identities to equivalence relations between the corresponding fusion
generators.
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1.1. Notation and terminology

Unless otherwise specified, we let

κ, κ ′ ∈ Z1,2, r ∈ Z1,p, s ∈ Z1,p′ , a, a′ ∈ Z1,p−1,

b, b′ ∈ Z1,p′−1, α ∈ Z0,p−1, β ∈ Z0,p′−1,
(1.2)

where

Zn,m = Z ∩ [n,m], n,m ∈ Z (1.3)

denotes the set of integers from n to m, both included. By an expression like κ · κ ′, we mean
1 · 1 = 2 · 2 = 1 or 1 · 2 = 2 · 1 = 2. As a simplified notation for a set of elements with labels
of the form (1.2), we write

{
fκ,a, g

0,s
α

} = {
fκ,a; κ ∈ Z1,2, a ∈ Z1,p−1

} ∪ {
g0,s

α ; α ∈ Z0,p−1, s ∈ Z1,p′
}

(1.4)

for example. The two terms representation and module are often used interchangeably when
the discussion is on modules. Here, we use the term module.

1.2. Sets of indecomposable modules and their intersection diagram

To assist the reader, the various sets of indecomposable modules are summarized here. Their
intersection diagram appears in (1.6) below. As convenient abbreviations, in (1.6), we let
(R2)W and (R3)W denote the sets of indecomposable modules of ranks 2 and 3, respectively,
while W(�p−a,b) represents the set {W(�p−a,b); a ∈ Z1,p−1, b ∈ Z1,p′−1}, and so on. If J is
a subset of J ′, the fusion algebra 〈J 〉 generated from J is a subalgebra of the fusion algebra
〈J ′〉 generated from J ′. It is noted that the fusions may generate indecomposable modules
not listed explicitly in the two sets.

Now, the set of indecomposable modules associated with boundary conditions is denoted
by

(
J out

p,p′
)
W and is represented in (1.6) by the interior of the hexagon. The set of

indecomposable modules appearing in the fundamental fusion algebra is denoted by
(
J fund

p,p′
)
W

and is represented by the interior of the upward-pointing triangle. The set of irreducible
modules is denoted by J irr

p,p′ and is represented by the interior of the soft-cornered square. The
set of indecomposable modules generated by repeated fusions of the irreducible modules is
denoted by

(
J irr

p,p′
)
W and is represented by the interior of the downward-pointing triangle. The

total set of indecomposable modules considered here is denoted by
(
J conj

p,p′
)
W . The cardinalities

of these sets are

∣∣(J out
p,p′

)
W

∣∣ = 6pp′ − 2p − 2p′,
∣∣(J fund

p,p′
)
W

∣∣ = 7pp′ − 3p − 3p′ + 1

∣∣J irr
p,p′

∣∣ = 2pp′ + 1
2 (p − 1)(p′ − 1),

∣∣(J irr
p,p′

)
W

∣∣ = 4p + 4p′ − 6 + 19
2 (p − 1)(p′ − 1)

∣∣(J conj
p,p′

)
W

∣∣ = 4p + 4p′ − 6 + 21
2 (p − 1)(p′ − 1)

(1.5)
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(a, b)W

(R2)W (R3)W

W(Δκp,b) W(Δa,κp )

W(Δκp,p )

W(Δp−a,b) W(Δ2p−a,b)

W(Δ3p−a,b)

(a, b)∗W

(J fund
p,p )W

(J irr
p,p )W

← −−−− (J out
p,p )W

J irr
p,p

(J conj
p,p )W

(1.6)

2. Fundamental fusion algebra of WLM(p, p′)

A logarithmic minimal model LM(p, p′) is defined [1, 2] for every coprime pair of positive
integers p < p′. The model has central charge

c = 1 − 6
(p′ − p)2

pp′ (2.1)

and conformal weights

�ρ,σ = (ρp′ − σp)2 − (p′ − p)2

4pp′ , ρ, σ ∈ N (2.2)

Its W-extension WLM(p, p′) is discussed in [3–6] and briefly reviewed in the following.

2.1. Modules associated with boundary conditions

The indecomposable modules in WLM(p, p′), which can be associated with Yang–Baxter
integrable boundary conditions on the strip lattice and W-invariant boundary conditions in the
continuum scaling limit, were identified in [4, 5] by extending constructions in [3] pertaining
to the case p = 1. The set of these modules is given by(
J out

p,p′
)
W = {

W(�κp,b),W(�a,κp′),W(�κp,p′),
(
Ra,0

κp,s

)
W ,

(
R0,b

r,κp′
)
W ,

(
Ra,b

κp,p′
)
W

}
(2.3)

and is of cardinality∣∣(J out
p,p′

)
W

∣∣ = 6pp′ − 2p − 2p′. (2.4)

Here, we have adopted the notation of [14] denoting a W-irreducible module of conformal
weight � by W(�). Thus, there are 2p + 2p′ − 2 irreducible (hence indecomposable rank-1)
modules

{W(�κp,s),W(�r,κp′)}, (2.5)

4
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where the two modulesW(�κp,p) = W(�p,κp′) are listed twice, in addition to 4pp′−2p−2p′

indecomposable rank-2 modules{(
Ra,0

κp,s

)
W ,

(
R0,b

r,κp′
)
W

}
(2.6)

and 2(p − 1)(p′ − 1) indecomposable rank-3 modules{(
Ra,b

κp,κ ′p′
)
W

}
subject to

(
Ra,b

p,2p′
)
W ≡ (

Ra,b
2p,p′

)
W and

(
Ra,b

2p,2p′
)
W ≡ (

Ra,b
p,p′

)
W .

(2.7)

The fusion algebra of these modules [5, 6]

Out[WLM(p, p′)] = 〈(
J out

p,p′
)
W

〉
(2.8)

is given explicitly in appendix A.1 as (A.6) through (A.11) and is both associative and
commutative. There is no unit or identity for p > 1, while, for p = 1, the irreducible module
W(�1,1) is the identity.

In [5], it was conjectured that every indecomposable rank-2 module has an embedding
pattern of one of the types

E(Δh, Δv) :

W(Δv)

W(Δh) W(Δh)

W(Δv)

E(Δh, Δv;Δc) :

W(Δv)

W(Δh) W(Δh)

W(Δv)

W(Δc)
.

(2.9)

where the horizontal arrows indicate the non-diagonal action of the Virasoro mode L0.
Specifically, the indecomposable rank-2 modules (2.6) are believed to enjoy the embedding
patterns:(
Ra,0

p,b

)
W ∼ E(�p+a,b,�3p−a,b;�p−a,b),

(
R0,b

a,p′
)
W ∼ E(�a,p′+b,�a,3p′−b;�a,p′−b)(

Ra,0
p,p′

)
W ∼ E(�p+a,p′ ,�3p−a,p′),

(
R0,b

p,p′
)
W ∼ E(�p,p′+b,�p,3p′−b)(

Ra,0
2p,s

)
W ∼ E(�2p+a,s ,�2p−a,s),

(
R0,b

r,2p′
)
W ∼ E(�r,2p′+b,�r,2p′−b).

(2.10)

In [5], it was also conjectured that the indecomposable rank-3 modules (2.7) have embedding
structures described by the patterns in (2.9), namely(
Ra,b

κp,p′
)
W ∼ E

((
Ra,0

κp,p′−b

)
W ,

(
Ra,0

(3−κ)p,b

)
W

) ∼ E
((
R0,b

p−a,κp′
)
W ,

(
R0,b

a,(3−κ)p′
)
W

)
, (2.11)

where the irreducible modules W(�h) and W(�v) have been replaced by indecomposable
rank-2 modules.

2.2. Supplementary modules

In [6], based on algebraic arguments, we suggested to supplement the set of indecomposable
modules (2.3) by the reducible yet indecomposable rank-1 modules

{(a, b)W}. (2.12)

The cardinality of the disjoint union(
J fund

p,p′
)
W = {

(a, b)W
} ∪ (

J out
p,p′

)
W (2.13)

5
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is therefore given by∣∣(J fund
p,p′

)
W

∣∣ = (p − 1)(p′ − 1) +
∣∣(J out

p,p′
)
W

∣∣ = 7pp′ − 3p − 3p′ + 1. (2.14)

We also argued that the embedding pattern of (a, b)W is of the form

W(Δ2p−a,b)

W(Δa,b)

(2.15)

implying the short exact sequence

0 → W(�2p−a,b) → (a, b)W → W(�a,b) → 0. (2.16)

The algebraic extension (2.13) of the set of indecomposable modules (2.3) was shown in
[6] to yield a well-defined fusion algebra called the fundamental fusion algebra and denoted
by

Fund[WLM(p, p′)] = 〈(
J fund

p,p′
)
W

〉
. (2.17)

The underlying fusion rules are all listed in appendix A.1. The algebra is generated from
repeated fusions of the two ‘fundamental representations’ (2, 1)W and (1, 2)W (strictly
speaking, in addition to the identity (1, 1)W ):

Fund[WLM(p, p′)] = 〈(1, 1)W , (2, 1)W , (1, 2)W〉. (2.18)

From [6], based on an explicit inspection of the fusion rules, we know that Out[WLM(p, p′)]
is an ideal of Fund[WLM(p, p′)]. Since the set (2.12) is empty for p = 1, we note that

Fund[WLM(1, p′)] = Out[WLM(1, p′)]. (2.19)

3. Fusion of irreducible modules in WLM(p, p′)

3.1. Modules

It is the same set of irreducible modules which appears as subfactors of the indecomposable
modules in (2.3) as in (2.13). This set is given by

J irr
p,p′ = {W(�ρ,σ ); ρp′ � σp, ρ ∈ Z1,3p−1, σ ∈ Z1,p′ } (3.1)

and we recall the simple identities

�a,b = �a+kp,b+kp′ , �a,kp′−b = �kp−a,b, k ∈ Z (3.2)

allowing a great deal of freedom in the labeling of the conformal weights. As a matter of
convention, we have chosen the labeling indicated in (3.1). This set of irreducible modules
also appears in [7] and has cardinality∣∣J irr

p,p′
∣∣ = 2pp′ + 1

2 (p − 1)(p′ − 1). (3.3)

For p > 1, the set (3.1) is larger than the set of irreducible modules (2.5) appearing as
generators in the fundamental fusion algebra. It is thus natural to try to understand the fusion
algebra resulting from repeated fusions of the irreducible modules (3.1) and to determine
the set of modules required to ensure closure of this fusion algebra. Even though the set
(2.5) is a subset of (3.1), there is, a priori, no need for the fundamental fusion algebra to
be a subalgebra of this fusion algebra since the former is generated by the two fundamental
representations which may not, after all, arise from repeated fusions of the irreducible modules

6
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in (3.1). Indeed, the fusion algebra Irr[WLM(p, p′)], to be discussed below, does not contain
the fundamental fusion algebra as a subalgebra, while the fusion algebra Conj[WLM(p, p′)],
also to be discussed below, does.

A complicating factor for p > 1 is that we do not have boundary conditions associated
with all of the irreducible modules in (3.1) (only with the ones appearing in (2.5)) and
are therefore incapable of determining the complete set of fusion rules within our lattice
approach. On the other hand, the sought-after fusion algebra is believed to be obtainable using
the Nahm–Gaberdiel–Kausch algorithm [10, 11]. The application of this algorithm is very
tedious, however, even for p = 1 and in the case WLM(2, 3), so an alternative approach to
the fusion rules is certainly welcome. Our proposal below is to use symmetry principles, and
we have verified, as we will discuss, that our conjectured fusion algebras indeed reproduce
the known results obtained using the algorithm.

In preparation for the discussion of fusion rules, we introduce the (p−1)(p′−1) reducible
yet indecomposable rank-1 modules

{(a, b)∗W} (3.4)

whose embedding patterns

W(Δ2p−a,b)

W(Δa,b)
(3.5)

imply the short exact sequences

0 → W(�a,b) → (a, b)∗W → W(�2p−a,b) → 0. (3.6)

It follows immediately that

χ [(a, b)∗W ](q) = χ [(a, b)W ](q), (3.7)

where the characters χ [(a, b)W ](q) are discussed in [6] alongside the characters of all the
other modules appearing in the fusion algebra.

It may seem surprising that we are introducing the contragredient modules (a, b)∗W . To
motivate their appearance, we briefly consider fusion of the underlying Virasoro modules in
LM(p, p′). Details thereof may be found in [16], in particular in the case LM(2, 3), and are
obtained using the Nahm–Gaberdiel–Kausch algorithm. Let us denote by V(�) the irreducible
Virasoro module of conformal weight �. A careful re-examination of the fusion V(2) ⊗ V(2)

in LM(2, 3) reveals that a natural but incorrect identification was made in [16]. This was also
observed in [14]. The correct fusion rule reads

V(2) ⊗ V(2) = (1, 1)∗, (3.8)

where (1, 1)∗ is the indecomposable module contragredient to the indecomposable identity
module (1, 1):

0 → V(2) → (1, 1) → V(0) → 0, 0 → V(0) → (1, 1)∗ → V(2) → 0. (3.9)

Continuing this analysis also sees the introduction of the two indecomposable Virasoro
modules (1, 2) and (1, 2)∗ corresponding to the short exact sequences

0 → V(1) → (1, 2) → V(0) → 0, 0 → V(0) → (1, 2)∗ → V(1) → 0. (3.10)

In LM(p, p′), this generalizes to pairs (a, b) and (a, b)∗ whose W-extended counterparts in
WLM(p, p′) have been denoted by (a, b)W and (a, b)∗W , respectively.

7
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Returning to the preparations, we also introduce the sets(
J conj

p,p′
)
W = (

J irr
p,p′

)
W ∪ {(a, b)W},(

J irr
p,p′

)
W = J irr

p,p′ ∪ {
(a, b)∗W ,

(
Ra,0

κp,s

)
W ,

(
R0,b

r,κp′
)
W ,

(
Ra,b

κp,p′
)
W

} (3.11)

as disjoint unions. Their cardinalities are thus∣∣(J conj
p,p′

)
W

∣∣ = ∣∣(J irr
p,p′

)
W

∣∣ + (p − 1)(p′ − 1),∣∣(J irr
p,p′

)
W

∣∣ = 4p + 4p′ − 6 + 19
2 (p − 1)(p′ − 1)

(3.12)

and will appear as the dimensions of two of the fusion algebras to be discussed. The notation(
J conj

p,p′
)
W and

(
J irr

p,p′
)
W will become clear in the following.

3.2. Spectrum maps

To facilitate the description of the fusion algebra generated from repeated fusions of the
irreducible modules (3.1), we now introduce some maps from

(
J conj

p,p′
)
W to itself. We first

extend the use of ∗ in (3.4) to an involution, here denoted by C and referred to as conjugation,
on the entire set of modules

(
J conj

p,p′
)
W by

C[(a, b)W ] = (a, b)∗W , C[(a, b)∗W ] = (a, b)W ,

C[R] = R, R ∈ (
J out

p,p′
)
W ∪ J irr

p,p′ .
(3.13)

Since the embedding patterns (2.10) and (2.11) are invariant under reversal of the arrows, we
see that the conjugation C, as an operation on the embedding patterns, simply reverses the
arrows. We note that this is trivially true when applied also to the irreducible modules.

We also introduce the map K which, on
(
J out

p,p′
)
W , acts by κ ↔ 2 · κ = 3 − κ on

the labeling of the modules as given in (2.3), vanishes on {W(�a,b)}, while its action on
{(a, b)W , (a, b)∗W ,W(�κp+a,b)} is described by the diagram

(a, b)W W(Δ3p−a,b)

W(Δ2p−a,b)

(a, b)∗W
K K

K (3.14)

We thus have

K
[(
Ra,0

κp,s

)
W

] = (
Ra,0

(2·κ)p,s

)
W , K

[(
R0,b

r,κp′
)
W

] = (
R0,b

r,(2·κ)p′
)
W ,

K
[(
Ra,b

κp,p′
)
W

] = (Ra,b
(2·κ)p,p′)W K[W(�κp,s)] = W(�(2·κ)p,s),

K[W(�κp+a,p′)] = W(�(2·κ)p+a,p′), K[W(�a,b)] = 0

K[(a, b)W ] = K[(a, b)∗W ] = K[W(�2p−a,b)] = W(�3p−a,b),

K[W(�3p−a,b)] = (a, b)∗W .

(3.15)

Lemma 1. The fusion algebra
〈(
J out

p,p′
)
W

〉
is K-symmetric

(
in the sense of (1.1) with O = K

restricted to J = (
J out

p,p′
)
W

)
.

Lemma 2. In the fusion algebra
〈(
J fund

p,p′
)
W

〉
, we have

(a, b)W ⊗ K[Q] = K[(a, b)W ⊗ Q], Q ∈ (
J out

p,p′
)
W . (3.16)

8
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◦ K L L2 M M2

K L2 K K 0 0

L K L2 L2 0 0

L2 K L2 L2 0 0

M 0 0 0 M2 M

M2 0 0 0 M M2

Figure 1. Cayley table of the composition rules for K,L,L2,M,M2 ∈ B for p > 1.

Lemma 1 follows by direct inspection of the fusion rules (A.6) though (A.11), while
lemma 2 follows by direct inspection of the fusion rules (A.3) through (A.5).

The map L is defined by

L[(a, b)W ] = W(�2p−a,b), L[W(�2p−a,b)] = (a, b)∗W , L[W(�a,b)] = 0

L[R] = R, R ∈ (
J irr

p,p′
)
W

∖{W(�κp−a,b)}, (3.17)

while the map M is defined by

M[(a, b)W ] = W(�p−a,b), M[W(�a,b)] = W(�p−a,b)

M[R] = 0, R ∈ (
J irr

p,p′
)
W

∖{W(�a,b)}. (3.18)

Since L and M both act trivially on
(
J out

p,p′
)
W , lemmas 1 and 2 obviously apply also when

replacing K by either L or M
(
recalling that

(
J out

p,p′
)
W generates an ideal of

〈(
J fund

p,p′
)
W

〉)
. We

note that the introduction of L and M is meaningless for p = 1.
Under composition, the maps K, L and M generate a five-dimensional commutative

algebra whose composition rules in the basis

B = {K,L,L2,M,M2}, L2 = L ◦ L, M2 = M ◦ M, (3.19)

are summarized in figure 1. This algebra has no unit but can, of course, be extended
straightforwardly by inclusion of the identity map I on

(
J conj

p,p′
)
W . We note that {M,M2}, for

example, generates an ideal. Another interesting observation is that L itself does not appear
as the result of composing any of the maps K,L2 = K ◦ K,M,M2. We will return to this
point in section 3.5.

In partial summary, and with Qκ denoting a general element of
(
J out

p,p′
)
W , the diagrams

W(Δp−a,b) (a, b)W W(Δ3p−a,b)

W(Δ2p−a,b)

(a, b)∗W
M K K

K LL

C

(3.20)

9
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Qκ (a, b)W W(Δp−a,b) W(Δ2p−a,b) W(Δ3p−a,b) (a, b)∗W

C ◦ K Q2·κ W(Δ3p−a,b) 0 W(Δ3p−a,b) (a, b)W W(Δ3p−a,b)

K ◦ C Q2·κ W(Δ3p−a,b) 0 W(Δ3p−a,b) (a, b)∗W W(Δ3p−a,b)

C ◦ L Qκ W(Δ2p−a,b) 0 (a, b)W W(Δ3p−a,b) (a, b)W

L ◦ C Qκ (a, b)∗W 0 (a, b)∗W W(Δ3p−a,b) W(Δ2p−a,b)

C ◦M 0 W(Δp−a,b) W(Δa,b) 0 0 0

M◦ C 0 0 W(Δa,b) 0 0 W(Δp−a,b)

Figure 2. Table indicating the results of acting with C ◦ O and O ◦ C, for O ∈ {K,L,M}, on the
various types of modules.

and

Qκ Q2·κ
K W(Δa,b) W(Δp−a,b)

M

W(Δa,b) 0
K,L M R ∈ (J irr

p,p )W ∩ W(Δa,b)

(3.21)

depict the non-trivial actions of the maps K,L,M, C on
(
J conj

p,p′
)
W . As indicated in figure 2,

the conjugation C does in general not commute with the three maps K, L and M. Its
inclusion in the algebra in figure 1 would thus result in a non-commutative composition
algebra. Commutativity is respected on

(
J out

p,p′
)
W ∪ {W(�a,b)}, though. In all instances, the

fusion algebras to be discussed in the following are commutative.

3.3. Symmetries and fusion rules

The fusion algebra Conj[WLM(p, p′)] to be discussed presently is constructed as an extension
of the fundamental fusion algebra Fund[WLM(p, p′)] whose fusion rules

Ri ⊗ Rj =
⊕

k

Ni,j
kRk, Ri ,Rj ,Rk ∈ (

J fund
p,p′

)
W , Ni,j

k ∈ N0 (3.22)

are given in [6] and recalled in appendix A.1. By an extension of a fusion algebra A, we
simply mean a fusion algebra containing A as a non-trivial subalgebra.

Proposition 1. Introducing Conj[WLM(p, p′)] = 〈(
J conj

p,p′
)
W

〉
as an extension of the

fundamental fusion algebra (3.22), by requiring it to be K-, L- and M-symmetric, yields
a unique fusion algebra. It is commutative and associative and has only non-negative integer
fusion multiplicities. The module (1, 1)W is the unit.

Proof. The uniqueness is an immediate consequence of the structure of the diagram (3.20)
where every module in

(
J conj

p,p′
)
W

∖(
J fund

p,p′
)
W can be written as O[(a, b)W ] for some O ∈ B and

10
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some (a, b)W ∈ (
J fund

p,p′
)
W . With O,O′,O′′ ∈ B, associativity follows from

(O[(a, b)W ] ⊗ O′[(a′, b′)W ]) ⊗ O′′[(a′′, b′′)W ]

= O′′[O′ ◦ O[(a, b)W ⊗ (a′, b′)W ] ⊗ (a′′, b′′)W ]

= O′′ ◦ O′ ◦ O[(a, b)W ⊗ (a′, b′)W ⊗ (a′′, b′′)W ]

= O[(a, b)W ] ⊗ (O′[(a′, b′)W ] ⊗ O′′[(a′′, b′′)W ]). (3.23)

Commutativity follows similarly. The fusion multiplicities are all taken from the set of fusion
multiplicities appearing in (3.22) and are therefore non-negative integers. Since every module
R ∈ (

J conj
p,p′

)
W can be written as R = O[F] for some O ∈ B ∪ {I } and F ∈ (

J fund
p,p′

)
W , the

unital property of (1, 1)W follows from

(1, 1)W ⊗ R = (1, 1)W ⊗ O[F] = O[(1, 1)W ⊗ F] = O[F] = R. (3.24)
�

As an immediate consequence of proposition 1, we see that

O[R] ⊗ O′[R′] = O′[R] ⊗ O[R′], O,O′ ∈ B, R,R′ ∈ (
J conj

p,p′
)
W . (3.25)

Combined with the composition algebra of figure 1, it also follows that, in addition to (3.22),
the fusion rules underlying Conj[WLM(p, p′)] are given by1

W(�2p−a,b) ⊗ Qκ = (a, b)W ⊗ Qκ , W(�3p−a,b) ⊗ Qκ = (a, b)W ⊗ Q2·κ
W(�p−a,b) ⊗ Qκ = 0, (a, b)∗W ⊗ Qκ = (a, b)W ⊗ Qκ , Qκ ∈ (

J out
p,p′

)
W (3.26)

and (here written in ‘reverse order’)

0 = W(�p−a,b) ⊗ W(�2p−a′,b′) = W(�p−a,b) ⊗ W(�3p−a′,b′)

= W(�p−a,b) ⊗ (a′, b′)∗W
K[(a, b)W ⊗ (a′, b′)W ] = W(�3p−a,b) ⊗ (a′, b′)W = W(�2p−a,b) ⊗ W(�3p−a′,b′)

= W(�3p−a,b) ⊗ (a′, b′)∗W
L[(a, b)W ⊗ (a′, b′)W ] = W(�2p−a,b) ⊗ (a′, b′)W
L2[(a, b)W ⊗ (a′, b′)W ] = W(�2p−a,b) ⊗ W(�2p−a′,b′) = W(�3p−a,b) ⊗ W(�3p−a′,b′)

= W(�2p−a,b) ⊗ (a′, b′)∗W = (a, b)∗W ⊗ (a′, b′)W
= (a, b)∗W ⊗ (a′, b′)∗W

M[(a, b)W ⊗ (a′, b′)W ] = W(�p−a,b) ⊗ (a′, b′)W
M2[(a, b)W ⊗ (a′, b′)W ] = W(�p−a,b) ⊗ W(�p−a′,b′). (3.27)

These applications of K,L,L2,M,M2 are trivially evaluated and their results are listed in
appendix A.2 for completeness. In particular, we find that

W(�a,b) ⊗ W(�a′,b′) = M2[(p − a, b)W ⊗ (p − a′, b′)W ]

= M2

⎡
⎣ p−|p−a−a′ |−1⊕

a′′=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
b′′=|b−b′ |+1,by 2

(a′′, b′′)W ⊕ Q

⎤
⎦

=
p−|p−a−a′ |−1⊕

a′′=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
b′′=|b−b′ |+1,by 2

W(�a′′,b′′), (3.28)

where Q ∈ (
J out

p,p′
)
W is given in (A.2). The irreducible modules W(�a,b) are thus seen to

generate a fusion subalgebra isomorphic to the fusion algebra of the usual rational minimal
model M(p, p′) [18, 19]. This was also observed in [7].

1 Similar fusion rules have been conjectured independently by Simon Wood [17].

11
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Proposition 1 implies the existence of a triplet of symmetry-generating modules whose
fusion rules correspond to the action of the three maps K, L and M.

Proposition 2. For p > 1, theK-, L- andM-symmetries of Conj[WLM(p, p′)] are governed
by the three modules W(�3p−1,1), W(�2p−1,1) and W(�p−1,1), respectively, in the sense that

K[R] = W(�3p−1,1) ⊗ R, L[R] = W(�2p−1,1) ⊗ R, M[R] = W(�p−1,1) ⊗ R
(3.29)

for all R ∈ (
J conj

p,p′
)
W .

Proof. This is an immediate consequence of

O[R] = O[(1, 1)W ⊗ R] = O[(1, 1)W ] ⊗ R, O ∈ {K,L,M}, R ∈ (
J conj

p,p′
)
W ,

(3.30)

where

K[(1, 1)W ] = W(�3p−1,1),

L[(1, 1)W ] = W(�2p−1,1),

M[(1, 1)W ] = W(�p−1,1).

(3.31)

�

For simple reference, we note that

�kp−1,1 = �1,kp′−1 = 1
4 (kp − 2)(kp′ − 2). (3.32)

In Fund[WLM(p, p′)], the two modules (2, 1)W and (1, 2)W (in addition to (1, 1)W ) are
naturally considered fundamental, cf (2.18). In Conj[WLM(p, p′)] for p > 1, on the other
hand, we see that the three irreducible modules W(�kp−1,1), k ∈ Z1,3, too, should be regarded
as fundamental since

Conj[WLM(p, p′)] = 〈(1, 1)W , (2, 1)W , (1, 2)W ,W(�p−1,1),W(�2p−1,1),W(�3p−1,1)〉.
(3.33)

To avoid confusion, we propose to refer to the six modules appearing explicitly in (3.33) as
basic modules. The fusion rules for these modules are summarized in appendix A.3.

Even though the conjugation C is an involution on
(
J conj

p,p′
)
W , it is not a symmetry of the

fusion algebra Conj[WLM(p, p′)] for p > 1. This is illustrated by

C[(1, 1)W ] ⊗ (1, 1)∗W = (1, 1)∗W �= (1, 1)W = C[(1, 1)W ⊗ (1, 1)∗W ]. (3.34)

Instead, one verifies the following weaker result.

Proposition 3.

F ⊗ R∗ = (F ⊗ R)∗, F ∈ (
J fund

p,p′
)
W , R ∈ (

J conj
p,p′

)
W . (3.35)

There are several results of the form appearing in (3.35), such as W(�3p−a,b) ⊗
C[(a′, b′)∗W ] = C[W(�3p−a,b) ⊗ (a′, b′)W ], for example, but we do not exhaust here the
various possible extensions of proposition 3. We also note that R∗ ⊗ R′∗ is not, in general,
equal to (R ⊗ R′)∗ as illustrated by setting R = (1, 1)W and R′ = (1, 1)∗W for p > 1:

((1, 1)W)∗ ⊗ ((1, 1)∗W)∗ = (1, 1)∗W �= (1, 1)W = ((1, 1)W ⊗ (1, 1)∗W)∗. (3.36)

12
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3.4. Fusion algebra generated from irreducible modules

A simple inspection of the fusion algebra Conj[WLM(p, p′)] reveals that the modules of the
form (a, b)W do not appear as the result of fusions involving a module in

(
J conj

p,p′
)
W

∖{(a, b)W}.
One also observes that all but the modules (a, b)W are generated by repeated fusions
of the irreducible modules (3.1). This implies, in particular, that the fusion algebra〈(
J irr

p,p′
)
W

〉
generated from repeated fusions of the irreducible modules is a subalgebra of

Conj[WLM(p, p′)]. For p > 1, this subalgebra does not have a unit since (1, 1)W is in the
omitted set {(a, b)W}.

As already indicated, the spectrum of modules underlying the fusion algebra
〈(
J irr

p,p′
)
W

〉
is given by

(
J conj

p,p′
)
W

∖{(a, b)W} and is obviously not invariant under conjugation for p > 1.

The minimal conjugation-invariant extension of this set is
(
J conj

p,p′
)
W . Thus, requiring that the

spectrum is invariant under conjugation brings back the fusion algebra Conj[WLM(p, p′)]
and hence the identity (1, 1)W . We recall, though, that conjugation is not a symmetry of this
fusion algebra for p > 1, cf the discussion leading up to proposition 3.

3.5. On fusion subalgebras and quotients

So far, we have encountered〈(
J out

p,p′
)
W

〉 ⊂ 〈(
J fund

p,p′
)
W

〉 ⊂ 〈(
J conj

p,p′
)
W

〉
,

〈(
J out

p,p′
)
W

〉 ⊂ 〈(
J irr

p,p′
)
W

〉 ⊂ 〈(
J conj

p,p′
)
W

〉
(3.37)

as sequences of fusion (sub)algebras. For p > 1, the two sets
(
J fund

p,p′
)
W and

(
J irr

p,p′
)
W are not

related by ⊂, while the various extensions of
(
J out

p,p′
)
W are trivial for p = 1:〈(

J out
1,p′

)
W

〉 = 〈(
J fund

1,p′
)
W

〉 = 〈(
J irr

1,p′
)
W

〉 = 〈(
J conj

1,p′
)
W

〉
. (3.38)

The fusion algebra Conj[WLM(p, p′)] contains many other fusion subalgebras than the ones
listed above. As some of these are ideals, one may also consider the corresponding quotient
structures. Here, we address some of these subalgebras and quotients.

First, the fusion algebra generated by the irreducible modules W(�a,b) is such an
ideal. The quotient

〈(
J conj

p,p′
)
W

〉/
({W(�a,b)}) is equivalent to the fusion algebra constructed

as in proposition 1 if one works with
(
J conj

p,p′
)
W

∖{W(�a,b)} and refrains from imposing
the M-symmetry. As a non-trivial subalgebra, it contains the fusion algebra

〈(
J out

p,p′
)
W ∪

{(a, b)∗W ,W(�(κ+1)p−a)}
〉
, which, for p > 1, does not have a unit. Likewise, refraining

from imposing the K- or L-symmetry, or any combination of the three symmetries, on the
corresponding subset of

(
J conj

p,p′
)
W , yields a fusion subalgebra of Conj[WLM(p, p′)]. Such

a subalgebra can, in general, not be described as a quotient of Conj[WLM(p, p′)] simply
because the omitted modules do not generate an ideal. For example, let us consider the
situation arising when leaving out the L-symmetry and omitting the modules W(�2p−a,b).
This yields a perfectly well-defined fusion subalgebra even though L[W(�2p−a,b)] = (a, b)∗W
prevents the modules W(�2p−a,b) from generating an ideal of Conj[WLM(p, p′)].

4. Conjecture and comparison with known results

Denoting by Irr[WLM(p, p′)] the fusion algebra generated by repeated fusions of the
irreducible modules according to the Nahm–Gaberdiel–Kausch algorithm [10, 11], we
conjecture that it is identical to the fusion algebra

〈(
J irr

p,p′
)
W

〉
discussed above.

Conjecture.

Irr[WLM(p, p′)] = 〈(
J irr

p,p′
)
W

〉
. (4.1)
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In support of this assertion, we first note that the irreducible module W(�a,b) of the
W-extended Virasoro algebra is, in fact, an irreducible module of the Virasoro algebra itself,
that is

W(�a,b) = V(�a,b). (4.2)

From the Nahm–Gaberdiel–Kausch algorithm, one thus recovers the usual rational minimal-
model Virasoro fusion rules (3.28).

Due to (3.38), the comparison of our proposal for p = 1 with the results [12, 13]
obtained by application of the Nahm–Gaberdiel–Kausch algorithm was already performed in
[3]. For p > 1, the situation is considerably more complicated and much less is known about
the implications of the algorithm. Following the earlier work [16] on fusion of irreducible
Virasoro modules, the fusion algebra generated by repeated fusions of the 13 irreducible
modules appearing in WLM(2, 3) was recently worked out in [14]. The focus there was
on a conjugation-invariant spectrum, and we have verified that Conj[WLM(2, 3)] indeed
corresponds to their results. For ease of comparison, we note that

W = (1, 1)W , Q = (1, 2)W , W∗ = (1, 1)∗W , Q∗ = (1, 2)∗W (4.3)

in the notation of [14]. This, of course, presupposes that the notion of the conjugate of a
module in

(
J conj

p,p′
)
W is the same as the one employed in [14]. This is easily verified. Essential

aspects of the role played by W(�3p−1,1) = W(7) in WLM(2, 3) were described in [14]. In
particular, it was found that the modules in

(
J out

2,3

)
W ∪{W(5),W(7)}∪{W∗,Q∗} are organized

in pairs with respect to fusion with W(7). From our perspective, this corresponds to the maps

Qκ Q2·κ
K W(Δ3p−a,b) (a, b)∗W

K
, (4.4)

where Qκ ∈ (
J out

2,3

)
W , a ∈ Z1,p−1 = {1} and b ∈ Z1,p′−1 = {1, 2}.

Adopting some further terminology used in [14], though without going into details, we
find that the set of modules which have a dual module is given by

(
J fund

p,p′
)
W and recall that they

generate a closed fusion algebra, namely Fund[WLM(p, p′)]. Believing that the modules in(
J fund

p,p′
)
W are, in fact, self-dual, it follows that the set of self-conjugate and self-dual modules

is given by
(
J out

p,p′
)
W . This is exactly the set of modules naturally associated with W-invariant

boundary conditions. They, too, generate a closed fusion algebra, namely Out[WLM(p, p′)].

5. Polynomial fusion rings

The fusion algebra

φi ⊗ φj =
⊕
k∈J

Ni,j
kφk, i, j ∈ J (5.1)

of a rational conformal field theory is finite and can be represented by a commutative matrix
algebra 〈Ni; i ∈ J 〉 where the entries of the |J | × |J | matrix Ni are

(Ni)j
k = Ni,j

k, i, j, k ∈ J (5.2)

and where the fusion multiplication ⊗ has been replaced by ordinary matrix multiplication. In
[20], Gepner found that every such algebra is isomorphic to a ring of polynomials in a finite set
of variables modulo an ideal defined as the vanishing conditions of a finite set of polynomials
in these variables. He also conjectured that this ideal of constraints corresponds to the local
extrema of a potential, see [21–23] for further elaborations on this conjecture.
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We extended Gepner’s result to the fundamental fusion algebra Fund[WLM(p, p′)] in
[6] where we found that

Fund[WLM(p, p′)] � C[X, Y ]/(Pp(X), Pp′(Y ), Pp,p′(X, Y )). (5.3)

Here,

Pn(x) = 2
(
T2n

(x

2

)
− 1

)
Un−1

(x

2

)
,

Pn,n′(x, y) =
(
Tn

(x

2

)
− Tn′

(y

2

))
Un−1

(x

2

)
Un′−1

(y

2

)
,

(5.4)

where Tn(x) and Un(x) are Chebyshev polynomials of the first and second kind, respectively.
The isomorphism in (5.3) reads

(a, b)W ↔ Ua−1

(
X

2

)
Ub−1

(
Y

2

)

W(�κp,s) ↔ 1

κ
Uκp−1

(
X

2

)
Us−1

(
Y

2

)

W(�a,κp′) ↔ 1

κ
Ua−1

(
X

2

)
Uκp′−1

(
Y

2

)
(
Ra,0

κp,s

)
W ↔ 2

κ
Ta

(
X

2

)
Uκp−1

(
X

2

)
Us−1

(
Y

2

)
(
R0,b

r,κp′
)
W ↔ 2

κ
Ur−1

(
X

2

)
Tb

(
Y

2

)
Uκp′−1

(
Y

2

)
(
Ra,b

κp,p′
)
W ↔ 4

κ
Ta

(
X

2

)
Uκp−1

(
X

2

)
Tb

(
Y

2

)
Up′−1

(
Y

2

)
, (5.5)

where it is noted that

Uκp−1

(
X

2

)
Up′−1

(
Y

2

)
≡ Up−1

(
X

2

)
Uκp′−1

(
Y

2

)
(mod Pp,p′(X, Y )), (5.6)

for example.
We now wish to show that the fusion algebra Conj[WLM(p, p′)] also admits a

polynomial-ring description. For p = 1, this is trivially true since Conj[WLM(1, p′)] =
Fund[WLM(1, p′)]. In the following, we will therefore assume that p > 1.

According to proposition 1, the fusion algebra Conj[WLM(p, p′)] is constructed as an
extension of Fund[WLM(p, p′)] where the extension, according to proposition 2, is governed
by the three irreducible modules W(�kp−1,1), k ∈ Z1,3. Following from the diagrams (3.20)
and (3.21) and the ensuing composition algebra in figure 1, we find that Conj[WLM(p, p′)]
can be described by a quotient polynomial ring with five generators, cf (3.33).

Proposition 4. For p > 1, the fusion algebra Conj[WLM(p, p′)] is isomorphic to the
quotient polynomial ring

Conj[WLM(p, p′)] � C[X, Y,K,L,M]/Ip,p′ , (5.7)

where Ip,p′ is the ideal defined by the vanishing conditions

0 =
(

K − Tp

(
X

2

))
Up−1

(
X

2

)
=

(
K − Tp′

(
Y

2

))
Up′−1

(
Y

2

)

= (L − 1)Up−1

(
X

2

)
= (L − 1)Up′−1

(
Y

2

)

= M2 − MUp−2

(
X

2

)
= M2 − MUp′−2

(
Y

2

)
= K(L − 1) = K2 − L2 = KM = LM. (5.8)
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The isomorphism in (5.7) is given by (5.5) supplemented by

W(�p−a,b) ↔ MUa−1

(
X

2

)
Ub−1

(
Y

2

)

W(�2p−a,b) ↔ LUa−1

(
X

2

)
Ub−1

(
Y

2

)

W(�3p−a,b) ↔ KUa−1

(
X

2

)
Ub−1

(
Y

2

)

(a, b)∗W ↔ L2Ua−1

(
X

2

)
Ub−1

(
Y

2

)
. (5.9)

Proof. With

K ↔ W(�3p−1,1), L ↔ W(�2p−1,1), M ↔ W(�p−1,1), (5.10)

it follows that Conj[WLM(p, p′)] is isomorphic to the quotient polynomial ring in X, Y, K, L
and M whose defining ideal can be described by supplementing the conditions in (5.3) with the
conditions following from translating the various arrows (including the trivial identity maps) in
the diagrams (3.20) and (3.21) into polynomial constraints. Completing the proof thus amounts
to verifying that the set of conditions in (5.8) is necessary and sufficient to characterize this
ideal. This is straightforwardly done. Here, we only include a couple of these verifications
as the remaining ones are treated similarly. First, that a condition is necessary means that it
is a consequence of the conditions given in (5.3) combined with the ones following from the
translation procedure. From K[W(�p,1)] = W(�2p,1), for example, we thus conclude that
KUp−1

(
X
2

) = 1
2U2p−1

(
X
2

)
. Using the identity U2p−1(x) = 2Tp(x)Up−1(x), we immediately

recognize the first condition appearing in (5.8). To illustrate that the conditions in (5.8) are
sufficient, we observe that

MUκp−1

(
X

2

)
≡ 0

(
mod (L − 1)Up−1

(
X

2

)
, LM

)
, (5.11)

where the congruence for κ = 2 is a simple consequence of the one for κ = 1. Multiplied by
Us−1

(
Y
2

)
, this corresponds to M[W(�κp,s)] = 0. Using the identity

Up−2(x)Ua−1(x) = Up−a−1(x) +
a−2∑

n=−(a−2),by 2

T|n|(x)Up−1(x), (5.12)

we subsequently find that

M2Ua−1

(
X

2

)
≡ MUp−a−1

(
X

2

) (
mod M2 − MUp−2

(
X

2

)
,MUp−1

(
X

2

))
,

(5.13)

which, multiplied by Ub−1
(

Y
2

)
, corresponds to M2[(a, b)W ] = M[(p − a, b)W ] which

itself comes from M[W(�p−a,b)] = W(�a,b). Let us also consider K
[(
Ra,b

κp,p′
)
W

] =[(
Ra,b

(2·κ)p,p′
)
W

]
corresponding to

K
4

κ
Ta

(
X

2

)
Uκp−1

(
X

2

)
Tb

(
Y

2

)
Up′−1

(
Y

2

)

≡ 4

2 · κ
Ta

(
X

2

)
U(2·κ)p−1

(
X

2

)
Tb

(
Y

2

)
Up′−1

(
Y

2

)
. (5.14)

For κ = 1, this follows immediately from 0 = (
K − Tp

(
X
2

))
Up−1

(
X
2

)
. For κ = 2, it follows

from Pp(X) = 0 which is not, though, in the set (5.8). However, we wish to emphasize
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that, not only Pp(X) = 0, but all three conditions appearing in (5.3) are consequences of the
conditions in (5.8). This follows from

Pp,p′(X, Y ) =
(

K − Tp′

(
Y

2

))
Up−1

(
X

2

)
Up′−1

(
Y

2

)

−
(

K − Tp

(
X

2

))
Up−1

(
X

2

)
Up′−1

(
Y

2

)
≡ 0, (5.15)

where the congruence is modulo
(
K −Tp

(
X
2

))
Up−1

(
X
2

)
and

(
K −Tp′

(
Y
2

))
Up′−1

(
Y
2

)
, and from

Pp(X) = 4

(
T 2

p

(
X

2

)
− 1

)
Up−1

(
X

2

)
≡ 0, (5.16)

where the congruence is modulo (L − 1)Up−1
(

X
2

)
, K2 − L2 and

(
K − Tp

(
X
2

))
Up−1

(
X
2

)
. The

condition for Pp′(Y ) follows similarly, of course. �

Just as Pp(X) and Pp′(Y ) are the minimal polynomials of X and Y modulo Ip,p′ , we see
that K(K2 − 1), L2(L − 1) and M(M2 − 1) are the minimal polynomials of K, L and M,
respectively. Indeed, using (5.13), in particular, we have

K3 ≡ KL2 ≡ KL ≡ K, L3 ≡ K2L ≡ K2 ≡ L2, M3 ≡ M2Up−2

(
X

2

)
≡ M

(5.17)

modulo Ip,p′ .
From the analysis above, we extract the conditions linking the modules W(�a,b) to each

other:

0 = MUp−1

(
X

2

)
= MUp′−1

(
Y

2

)
= M

(
Up−2

(
X

2

)
− Up′−2

(
Y

2

))
. (5.18)

Up to the factors of M, these are recognized as the standard conditions defining the quotient
polynomial ring associated with the rational minimal models, see [6, 19], for example. This
should not, though, come as a surprise since we have already realized that the fusion subalgebra
generated by the irreducible modules W(�a,b) satisfy the usual minimal-model fusion
rules (3.28).

Since the minimal fusion algebra generated from repeated fusions of the irreducible
modules,

〈(
J irr

p,p′
)
W

〉
, does not have a unit, it cannot be isomorphic to a quotient polynomial

ring. However, since this fusion algebra is a subalgebra of Conj[WLM(p, p′)] = 〈(
J conj

p,p′
)
W

〉
,

it is isomorphic to a subring of the quotient polynomial ring appearing in (5.7). This subring
is obtained by omitting the polynomials Ua−1

(
X
2

)
Ub−1

(
Y
2

)
themselves from the ambient ring

while keeping their products with other non-trivial polynomials. We see that this corresponds
to eliminating the identity map I from the allowed operations on

(
J conj

p,p′
)
W when constructing

the composition algebra in figure 1. This elimination procedure is algebraically well defined,
cf the closure of the composition algebra and the discussion following (3.19). We also recall
from [6] that omitting the polynomials Ua−1

(
X
2

)
Ub−1

(
Y
2

)
from the quotient polynomial ring

in (5.3) yields a well-defined subring isomorphic to the fusion algebra Out[WLM(p, p′)] of
the modules naturally associated with W-invariant boundary conditions.

6. Concluding remarks

Based on symmetry principles, we have derived a fusion algebra
〈(
J irr

p,p′
)
W

〉
generated from

repeated fusions of the irreducible modules appearing in the W-extended logarithmic minimal
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model WLM(p, p′). In addition to the irreducible modules themselves (3.1), closure of the
fusion algebra requires the participation of a variety of reducible yet indecomposable modules.
We conjecture that this fusion algebra is the same as the fusion algebra Irr[WLM(p, p′)],
also generated by repeated fusions of the irreducible modules, but obtained by application
of the Nahm–Gaberdiel–Kausch algorithm. In support of this conjecture, we find that the
two fusion algebras agree for WLM(1, p′) [3, 12, 13] and for WLM(2, 3) [14]. For
p > 1, our fusion algebra does not contain an algebra unit. Requiring that the spectrum of
modules is invariant under a natural notion of conjugation, however, introduces an additional
(p − 1)(p′ − 1) reducible yet indecomposable rank-1 modules, among which the identity is
found. This bigger set of indecomposable modules is denoted by

(
J conj

p,p′
)
W . The corresponding

fusion algebra Conj[WLM(p, p′)] is invariant under the symmetries K, L and M and
contains Irr[WLM(p, p′)] (or strictly speaking

〈(
J irr

p,p′
)
W

〉
) as a subalgebra. These symmetry

generators are maps from
(
J conj

p,p′
)
W to itself. Their actions on Conj[WLM(p, p′)] are shown

to be generated by fusions with the three irreducible modules of conformal weights �kp−1,1,
k = 3, 2, 1, respectively. We have also identified a polynomial fusion ring isomorphic to the
fusion algebra Conj[WLM(p, p′)]. For p > 1, it has five generators corresponding to the
two fundamental modules and the three symmetry generators. The fusion algebra

〈(
J irr

p,p′
)
W

〉
is isomorphic to a particular subring of the polynomial fusion ring.

The reader may wonder about our motivation for introducing the three maps K, L and
M when the objective was to determine the fusion algebra generated by repeated fusions of
the irreducible modules. First, since W(�a,b) = V(�a,b), we want the irreducible modules
W(�a,b) to generate a fusion subalgebra isomorphic to the fusion algebra of the Virasoro
minimal model M(p, p′). Second, from the success of Fund[WLM(p, p′)] as an ambient
fusion algebra hosting the fusion algebra Out[WLM(p, p′)] generated by the modules
associated with boundary conditions, we expect to encounter a fusion algebra generated by a
small number of basic modules. As in the case of Fund[WLM(p, p′)], this fusion algebra
may not be the sought-after fusion algebra itself (Irr[WLM(p, p′)]), but rather an extension
thereof (Conj[WLM(p, p′)]). Third, examinations like (3.8) reveal that the contragredient
modules (a, b)∗W are generated, and we are led to consider the set

(
J conj

p,p′
)
W of indecomposable

modules. Fourth, we wish to preserve as much as possible the factorization enjoyed by
the indecomposable modules of the fundamental fusion algebra where every module can be
written as the fusion of a ‘horizontal’ and a ‘vertical’ module:

(
Rα,β

ρ,σ

)
W = (

Rα,0
ρ,1

)
W⊗(

R0,β

1,σ

)
W .

Supported by explicit evaluations, we then made the ansatz that the set of basic modules is
given by the ones appearing explicitly in (3.33), that is,

{(1, 1)W , (2, 1)W , (1, 2)W ,W(�p−1,1),W(�2p−1,1),W(�3p−1,1)}, (6.1)

and that their fusion rules are the ones given in figures A1 and A2. For p > 2, we thus have

(1, 2)W ⊗ W(�kp−1,1) = W(�kp−1,2)

(2, 1)W ⊗ W(�1,kp′−1) = (2, 1)W ⊗ W(�kp−1,1) = W(�kp−2,1) = W(�2,kp′−1), (6.2)

for example, resembling the aforementioned factorization. Everything else is fixed by
requiring associativity of the fusion algebra, the one called Conj[WLM(p, p′)]. The
subalgebra generated from repeated fusions of the irreducible modules is subsequently
identified straightforwardly. Since universality, as opposed to model-specific properties, is
likely to be manifest when the basic rules of the game are expressed in terms of symmetry
principles, we found it natural to try to translate the fusion rules into such principles thereby
introducing K, L and M. Once identified, these symmetry generators illuminate quite clearly
the structure of the fusion algebra.
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In summary, we have verified that our proposals provide well-defined fusion algebras(〈(
J irr

p,p′
)
W

〉
and Conj[WLM(p, p′)], in particular

)
and that they reproduce all known results

in this regard. We are not, though, making any claims of uniqueness of the constructions, but
do conjecture that

〈(
J irr

p,p′
)
W

〉
is identical to Irr[WLM(p, p′)] obtained by application of the

Nahm–Gaberdiel–Kausch algorithm. As generated from the minimal conjugation-invariant
extension

(
J conj

p,p′
)
W of the spectrum

(
J irr

p,p′
)
W , we furthermore conjecture that the K-, L- and

M-invariant fusion algebra Conj[WLM(p, p′)] is identical to the similar extension obtained
by application of the Nahm–Gaberdiel–Kausch algorithm.
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Appendix A. Fusion rules of Conj[WLM(p, p′)]

A.1. Fundamental fusion algebra Fund[WLM(p, p′)]

Here, we summarize the fusion rules, obtained in [5, 6], underlying the fusion algebra
Fund[WLM(p, p′)] as given in (2.17). To this end, by a direct sum of representations
An with an unspecified lower summation bound, we mean the direct sum in steps of 2 whose
lower bound is given by the parity of the upper bound:

N⊕
n

An =
N⊕

n= 1
2 (1−(−1)N ),by 2

An, N ∈ Z (A.1)

This direct sum vanishes for negative N. For simplicity, and in compliance with the notation of
[6], we write

(
R0,0

ρ,σ

)
W = (ρ, σ )W , (κp, s)W = W(�κp,s) and (r, κp′)W = W(�r,κp′). Now,

the fusions involving the module (a, b)W are given by

(a, b)W ⊗ (a′, b′)W

=
p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(i, j)W

⎫⎬
⎭ ⊕

a+a′−p−1⊕
α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(
Rα,0

p,j

)
W

⎫⎬
⎭

⊕
b+b′−p′−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

(
R0,β

i,p′
)
W

⎫⎬
⎭ ⊕

a+a′−p−1⊕
α

⎧⎨
⎩

b+b′−p′−1⊕
β

(
Rα,β

p,p′
)
W

⎫⎬
⎭, (A.2)

(a, b)W ⊗ (κp, b′)W =
a−1⊕
α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(
Rα,0

κp,j

)
W ⊕

b+b′−p′−1⊕
β

(
Rα,β

κp,p′
)
W

⎫⎬
⎭

(a, b)W ⊗ (a′, κp′)W =
b−1⊕
β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

(
R0,β

i,κp′
)
W ⊕

a+a′−p−1⊕
α

(
Rα,β

κp,p′
)
W

⎫⎬
⎭
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(a, b)W ⊗ (κp, p′)W =
a−1⊕
α

⎧⎨
⎩

b−1⊕
β

(
Rα,β

κp,p′
)
W

⎫⎬
⎭ , (A.3)

(a, b)W ⊗ (
Ra′,0

κp,s

)
W =

p−|p−a−a′ |−1⊕
α=|a−a′ |+1,by 2

⎧⎨
⎩

p′−|p′−b−s|−1⊕
j=|b−s|+1,by 2

(
Rα,0

κp,j

)
W ⊕

b+s−p′−1⊕
β

(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
a−a′−1⊕

α

⎧⎨
⎩

p′−|p′−b−s|−1⊕
j=|b−s|+1,by 2

2
(
Rα,0

κp,j

)
W ⊕

b+s−p′−1⊕
β

2
(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
a+a′−p−1⊕

α

⎧⎨
⎩

p′−|p′−b−s|−1⊕
j=|b−s|+1,by 2

2
(
Rα,0

(2·κ)p,j

)
W ⊕

b+s−p′−1⊕
β

2
(
Rα,β

(2·κ)p,p′
)
W

⎫⎬
⎭

(a, b)W ⊗ (
R0,b′

r,κp′
)
W =

p′−|p′−b−b′ |−1⊕
β=|b−b′ |+1,by 2

⎧⎨
⎩

p−|p−a−r|−1⊕
i=|a−r|+1,by 2

(
R0,β

i,κp′
)
W ⊕

a+r−p−1⊕
α

(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
b−b′−1⊕

β

⎧⎨
⎩

p−|p−a−r|−1⊕
i=|a−r|+1,by 2

2
(
R0,β

i,κp′
)
W ⊕

a+r−p−1⊕
α

2
(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
b+b′−p′−1⊕

β

⎧⎨
⎩

p−|p−a−r|−1⊕
i=|a−r|+1,by 2

2
(
R0,β

i,(2·κ)p′
)
W ⊕

a+r−p−1⊕
α

2
(
Rα,β

(2·κ)p,p′
)
W

⎫⎬
⎭
(A.4)

and

(a, b)W ⊗ (
Ra′,b′

κp,p′
)
W =

p−|p−a−a′ |−1⊕
α=|a−a′ |+1,by 2

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β=|b−b′ |+1,by 2

(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
b−b′−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α=|a−a′ |+1,by 2

2
(
Rα,β

κp,p′
)
W

⎫⎬
⎭ ⊕

a−a′−1⊕
α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β=|b−b′ |+1,by 2

2
(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
a−a′−1⊕

α

⎧⎨
⎩

b−b′−1⊕
β

4
(
Rα,β

κp,p′
)
W

⎫⎬
⎭ ⊕

a+a′−p−1⊕
α

⎧⎨
⎩

b+b′−p′−1⊕
β

4
(
Rα,β

κp,p′
)
W

⎫⎬
⎭

⊕
a+a′−p−1⊕

α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β=|b−b′ |+1,by 2

2
(
Rα,β

(2·κ)p,p′
)
W ⊕

b−b′−1⊕
β

4
(
Rα,β

(2·κ)p,p′
)
W

⎫⎬
⎭

⊕
b+b′−p′−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α=|a−a′ |+1,by 2

2
(
Rα,β

(2·κ)p,p′
)
W ⊕

a−a′−1⊕
α

4
(
Rα,β

(2·κ)p,p′
)
W

⎫⎬
⎭ . (A.5)

The fusion of two W-indecomposable rank-1 modules in
(
J out

p,p′
)
W is given by

(κp, s)W ⊗ (κ ′p, s ′)W =
p−1⊕
α

⎧⎨
⎩

p′−|p′−s−s ′ |−1⊕
j=|s−s ′ |+1,by 2

(
Rα,0

(κ·κ ′)p,j

)
W ⊕

s+s ′−p′−1⊕
β

(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭
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(κp, s)W ⊗ (r, κ ′p′)W =
r−1⊕
α

⎧⎨
⎩

s−1⊕
β

(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

(r, κp′)W ⊗ (r ′, κ ′p′)W =
p′−1⊕

β

⎧⎨
⎩

p−|p−r−r ′ |−1⊕
j=|r−r ′ |+1,by 2

(
R0,β

j,(κ·κ ′)p′
)
W ⊕

r+r ′−p−1⊕
α

(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ . (A.6)

The fusion of a W-indecomposable rank-1 module in
(
J out

p,p′
)
W with a W-indecomposable

rank-2 module is given by

(κp, s)W ⊗ (
Ra,0

κ ′p,s ′
)
W =

p′−|p′−s−s ′ |−1⊕
j=|s−s ′ |+1,by 2

{
p−a−1⊕

α

2
(
Rα,0

(κ·κ ′)p,j

)
W ⊕

a−1⊕
α

2
(
Rα,0

(2·κ·κ ′)p,j

)
W

}

⊕
s+s ′−p′−1⊕

β

{
p−a−1⊕

α

2
(
Rα,β

κp,κ ′p′
)
W ⊕

a−1⊕
α

2
(
Rα,β

κp,(2·κ ′)p′
)
W

}

(κp, s)W ⊗ (
R0,b

r,κ ′p′
)
W =

r−1⊕
α

⎧⎨
⎩

p′−|p′−s−b|−1⊕
β=|b−s|+1,by 2

(
Rα,β

κp,κ ′p′
)
W ⊕

s−b−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W

⊕
b+s−p′−1⊕

β

2
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

(r, κp′)W ⊗ (
Ra,0

κ ′p,s

)
W =

s−1⊕
β

⎧⎨
⎩

p−|p−r−a|−1⊕
α=|a−r|+1,by 2

(
Rα,β

κp,κ ′p′
)
W ⊕

r−a−1⊕
α

2
(
Rα,β

κp,κ ′p′
)
W

⊕
a+r−p−1⊕

α

2
(
Rα,β

κp,(2·κ ′)p′
)
W

}

(r, κp′)W ⊗ (
R0,b

r ′,κ ′p′
)
W =

p−|p−r−r ′ |−1⊕
j=|r−r ′ |+1,by 2

⎧⎨
⎩

p′−b−1⊕
β

2
(
R0,β

j,(κ·κ ′)p′
)
W ⊕

b−1⊕
β

2
(
R0,β

j,(2·κ·κ ′)p′
)
W

⎫⎬
⎭

⊕
r+r ′−p−1⊕

α

⎧⎨
⎩

p′−b−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W ⊕

b−1⊕
β

2
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭ . (A.7)

The fusion of a W-indecomposable rank-1 module in
(
J out

p,p′
)
W with a W-indecomposable

rank-3 module is given by

(κp, s)W ⊗ (
Ra,b

p,κ ′p′
)
W =

p−a−1⊕
α

⎧⎨
⎩

p′−|p′−s−b|−1⊕
β=|b−s|+1,by 2

2
(
Rα,β

κp,κ ′p′
)
W ⊕

s−b−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⊕
b+s−p′−1⊕

β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
a−1⊕
α

⎧⎨
⎩

p′−|p′−s−b|−1⊕
β=|b−s|+1,by 2

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

s−b−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W
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⊕
b+s−p′−1⊕

β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

(r, κp′)W ⊗ (
Ra,b

p,κ ′p′
)
W =

p′−b−1⊕
β

⎧⎨
⎩

p−|p−r−a|−1⊕
α=|a−r|+1,by 2

2
(
Rα,β

κp,κ ′p′
)
W ⊕

r−a−1⊕
α

4
(
Rα,β

κp,κ ′p′
)
W

⊕
a+r−p−1⊕

α

4
(
Rα,β

κp,(2·κ ′)p′
)
W

}

⊕
b−1⊕
β

⎧⎨
⎩

p−|p−r−a|−1⊕
α=|a−r|+1,by 2

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

r−a−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⊕
a+r−p−1⊕

α

4
(
Rα,β

κp,κ ′p′
)
W

}
. (A.8)

The fusion of two W-indecomposable rank-2 modules is given by

(
Ra,0

κp,s

)
W ⊗ (

Ra′,0
κ ′p,s ′

)
W =

p′−|p′−s−s ′ |−1⊕
j=|s−s ′ |+1,by 2

⎧⎨
⎩

p−|a−a′ |−1⊕
α

2
(
Rα,0

(κ·κ ′)p,j

)
W ⊕

|p−a−a′ |−1⊕
α

2
(
Rα,0

(κ·κ ′)p,j

)
W

⊕
p−|p−a−a′ |−1⊕

α

2
(
Rα,0

(2·κ·κ ′)p,j

)
W ⊕

|a−a′|−1⊕
α

2
(
Rα,0

(2·κ·κ ′)p,j

)
W

⎫⎬
⎭

⊕
s+s ′−p′−1⊕

β

⎧⎨
⎩

p−|a−a′ |−1⊕
α

2
(
Rα,β

κp,κ ′p′
)
W ⊕

|p−a−a′ |−1⊕
α

2
(
Rα,β

κp,κ ′p′
)
W

⊕
p−|p−a−a′ |−1⊕

α

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|a−a′|−1⊕
α

2
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

(
Ra,0

κp,s

)
W ⊗ (

R0,b
r,κ ′p′

)
W =

p−|p−r−a|−1⊕
α=|a−r|+1,by 2

⎧⎨
⎩

p′−|p′−s−b|−1⊕
β=|b−s|+1,by 2

(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
p−|p−r−a|−1⊕
α=|a−r|+1,by 2

⎧⎨
⎩

s−b−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ ⊕

p′−|p′−s−b|−1⊕
β=|b−s|+1,by 2

{
r−a−1⊕

α

2
(
Rα,β

κp,κ ′p′
)
W

}

⊕
r−a−1⊕

α

⎧⎨
⎩

s−b−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ ⊕

a+r−p−1⊕
α

⎧⎨
⎩

b+s−p′−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
a+r−p−1⊕

α

⎧⎨
⎩

p′−|p′−s−b|−1⊕
β=|b−s|+1,by 2

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

s−b−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
b+s−p′−1⊕

β

⎧⎨
⎩

p−|p−r−a|−1⊕
α=|a−r|+1,by 2

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

r−a−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭
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(
R0,b

r,κp′
)
W ⊗ (

R0,b′
r ′,κ ′p′

)
W =

p−|p−r−r ′ |−1⊕
j=|r−r ′ |+1,by 2

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

2
(
R0,β

j,(κ·κ ′)p′
)
W ⊕

|p′−b−b′ |−1⊕
β

2
(
R0,β

j,(κ·κ ′)p′
)
W

⊕
p′−|p′−b−b′ |−1⊕

β

2
(
R0,β

j,(2·κ·κ ′)p′
)
W ⊕

|b−b′ |−1⊕
β

2
(
R0,β

j,(2·κ·κ ′)p′
)
W

⎫⎬
⎭

⊕
r+r ′−p−1⊕

α

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W ⊕

|p′−b−b′ |−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W

⊕
p′−|p′−b−b′ |−1⊕

β

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|b−b′ |−1⊕
β

2
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭. (A.9)

The fusion of a W-indecomposable rank-2 module with a W-indecomposable rank-3 module
is given by

(
Ra,0

κp,s

)
W ⊗ (

Ra′,b′
p,κ ′p′

)
W =

p′−|p′−s−b′ |−1⊕
β=|b′−s|+1,by 2

⎧⎨
⎩

p−|a−a′ |−1⊕
α

2
(
Rα,β

κp,κ ′p′
)
W ⊕

|p−a−a′ |−1⊕
α

2
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
s−b′−1⊕

β

⎧⎨
⎩

p−|a−a′ |−1⊕
α

4
(
Rα,β

κp,κ ′p′
)
W ⊕

|p−a−a′ |−1⊕
α

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
b′+s−p′−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α

4
(
Rα,β

κp,κ ′p′
)
W ⊕

|a−a′ |−1⊕
α

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
p′−|p′−s−b′ |−1⊕
β=|b′−s|+1,by 2

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|a−a′|−1⊕
α

2
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
s−b′−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
b′+s−p′−1⊕

β

⎧⎨
⎩

p−|a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W⊕

|p−a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

(
R0,b

r,κp′
)
W ⊗ (

Ra′,b′
p,κ ′p′

)
W =

p−|p−r−a′ |−1⊕
α=|a′−r|+1,by 2

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W ⊕

|p′−b−b′ |−1⊕
β

2
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
r−a′−1⊕

α

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W ⊕

|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
a′+r−p−1⊕

α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W ⊕

|b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭
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⊕
p−|p−r−a′ |−1⊕
α=|a′−r|+1,by 2

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

2
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|b−b′ |−1⊕
β

2
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
r−a′−1⊕

α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W⊕

|b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
a′+r−p−1⊕

α

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭. (A.10)

Finally, the fusion of two W-indecomposable rank-3 modules is given by(
Ra,b

κp,p′
)
W ⊗ (

Ra′,b′
p,κ ′p′

)
W

=
p−|a−a′ |−1⊕

α

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ ⊕

|p−a−a′ |−1⊕
α

⎧⎨
⎩

|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
p−|a−a′ |−1⊕

α

⎧⎨
⎩

|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ ⊕

|p−a−a′ |−1⊕
α

⎧⎨
⎩

p′−|b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
p−|p−a−a′ |−1⊕

α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ ⊕

|a−a′ |−1⊕
α

⎧⎨
⎩

|b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
p−|p−a−a′ |−1⊕

α

⎧⎨
⎩

|b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭ ⊕

|a−a′|−1⊕
α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,κ ′p′
)
W

⎫⎬
⎭

⊕
p−|a−a′ |−1⊕

α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
|p−a−a′ |−1⊕

α

⎧⎨
⎩

p′−|p′−b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|b−b′ |−1⊕
β

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
p′−|b−b′ |−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|a−a′|−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭

⊕
|p′−b−b′ |−1⊕

β

⎧⎨
⎩

p−|p−a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W ⊕

|a−a′ |−1⊕
α

4
(
Rα,β

κp,(2·κ ′)p′
)
W

⎫⎬
⎭ .

(A.11)

A.2. Some fusion evaluations

The applications of K, L, L2, M and M2 appearing in (3.27) read
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⊗ (1, 1)W (2, 1)W (1, 2)W W(Δp−1,1) W(Δ2p−1,1) W(Δ3p−1,1)

(1, 1)W (1, 1)W (2, 1)W (1, 2)W W(Δp−1,1) W(Δ2p−1,1) W(Δ3p−1,1)

(2, 1)W (2, 1)W (1, 1)W ⊕ (3, 1)W (2, 2)W W(Δp−2,1) W(Δ2p−2,1) W(Δ3p−2,1)

(1, 2)W (1, 2)W (2, 2)W (1, 1)W ⊕ (1, 3)W W(Δp−1,2) W(Δ2p−1,2) W(Δ3p−1,2)

W(Δp−1,1) W(Δp−1,1) W(Δp−2,1) W(Δp−1,2) W(Δ1,1) 0 0

W(Δ2p−1,1) W(Δ2p−1,1) W(Δ2p−2,1) W(Δ2p−1,2) 0 (1, 1)∗W W(Δ3p−1,1)

W(Δ3p−1,1) W(Δ3p−1,1) W(Δ3p−2,1) W(Δ3p−1,2) 0 W(Δ3p−1,1) (1, 1)∗W

Figure A1. Cayley table of the basic fusion rules for Conj[WLM(p, p′)] for p > 2.

K[(a, b)W ⊗ (a′, b′)W ]

=
p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

W(�3p−i,j ) ⊕
a+a′−p−1⊕

α

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(
Rα,0

2p,j

)
W

⊕
b+b′−p′−1⊕

β

p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

(
R0,β

i,2p′
)
W ⊕

a+a′−p−1⊕
α

b+b′−p′−1⊕
β

(
Rα,β

2p,p′
)
W

L[(a, b)W ⊗ (a′, b′)W ]

=
p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

W(�2p−i,j ) ⊕
a+a′−p−1⊕

α

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(
Rα,0

p,j

)
W

⊕
b+b′−p′−1⊕

β

p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

(
R0,β

i,p′
)
W ⊕

a+a′−p−1⊕
α

b+b′−p′−1⊕
β

(
Rα,β

p,p′
)
W

L2[(a, b)W ⊗ (a′, b′)W ] =
p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(i, j)∗W⊕
a+a′−p−1⊕

α

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

(
Rα,0

p,j

)
W

⊕
b+b′−p′−1⊕

β

p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

(
R0,β

i,p′
)
W ⊕

a+a′−p−1⊕
α

b+b′−p′−1⊕
β

(
Rα,β

p,p′
)
W

M[(a, b)W ⊗ (a′, b′)W ] =
p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

W(�p−i,j )

M2[(a, b)W ⊗ (a′, b′)W ] =
p−|p−a−a′ |−1⊕
i=|a−a′ |+1,by 2

p′−|p′−b−b′ |−1⊕
j=|b−b′ |+1,by 2

W(�i,j ). (A.12)

A.3. Basic fusion rules

For p > 2, the basic fusion rules of Conj[WLM(p, p′)] (3.33) are summarized in
figure A1, where (3, 1)W = W(�3,1) ∈ (J out

3,p′)W , for p = 3. The basic fusion rules for
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⊗ (1, 1)W W(Δ2,1) (1, 2)W W(Δ1,1) W(Δ3,1) W(Δ5,1)

(1, 1)W (1, 1)W W(Δ2,1) (1, 2)W W(Δ1,1) W(Δ3,1) W(Δ5,1)

W(Δ2,1) W(Δ2,1) (R1,0
2,1)W W(Δ2,2) 0 W(Δ2,1) W(Δ4,1)

(1, 2)W (1, 2)W W(Δ2,2) (1, 1)W ⊕ (1, 3)W W(Δ1,2) W(Δ3,2) W(Δ5,2)

W(Δ1,1) W(Δ1,1) 0 W(Δ1,2) W(Δ1,1) 0 0

W(Δ3,1) W(Δ3,1) W(Δ2,1) W(Δ3,2) 0 (1, 1)∗W W(Δ5,1)

W(Δ5,1) W(Δ5,1) W(Δ4,1) W(Δ5,2) 0 W(Δ5,1) (1, 1)∗W

Figure A2. Cayley table of the basic fusion rules for Conj[WLM(2, p′)].

p = 2 are given in figure A2, where (2, 1)W = W(�2,1) ∈ (
J out

2,p′
)
W and, for p′ = 3,

(1, 3)W = W(�1,3) ∈ (
J out

2,3

)
W .
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